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C H A P T E R  1  

Introduction 

BACKGROUND 
Accurate prediction of the performance of 
infrastructure components, including concrete 
bridge decks, is essential when determining the 
maintenance and repair actions to be performed 
on the element throughout its lifetime. By using 
accurate estimates, agency costs due to 
maintenance, repair and reconstruction, along 
with user costs, can all be minimized. 
Transportation agencies most often use discrete 
condition ratings (CRs) to assess the state of the 
bridge deck in order to simplify the decision-
making and inspection procedures. For example, 
in Pennsylvania, decks are rated from 0 (worst) 
to 9 (best) based on performance criteria such as 
delamination, spalling, electrical potential, and 
chloride content (PennDOT, 2009). While 
recently completed research attempted to 
incorporate the extent of cracking into the rating 
system (Manafpour et al., 2016), more work is 
needed to develop accurate and reliable models 
predicting the lifecycle of bridge decks and other infrastructure systems.  

OBJECTIVES 
The goal of the research was to develop a robust, self-learning, probabilistic model to predict the service 
life of concrete bridge decks and subsequently other infrastructure components. The model originates from 
the existing performance data for 22,000 bridge decks in the State of Pennsylvania and utilizes advanced 
statistical tools, including machine learning systems and Bayesian probabilistic networks. The newly 
developed tool will allow state departments of transportation to: (1) accurately predict the lifetime of 
concrete bridge decks and (2) establish more efficient and accurate management decisions, resulting in 
increased longevity of the nation’s infrastructure.  

DATA AND DATA STRUCTURES 
The dataset analyzed in this work consists of biannual inspections of bridges across Pennsylvania obtained 
from the Pennsylvania Department of Transportation (PennDOT). Historical bridge deck condition ratings 
(CRs) along with attributes of the bridge structure obtained from the Bridge Management System (BMS2) 

Figure 1. Demolition of a bridge in 
Pennsylvania. The state has the highest 
number of structurally deficient bridges. 

[PennDOT 2009] 
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(PennDOT, 2009) were accessed for over 22,000 bridge decks inspected between 1985 and 2015. Condition 
ratings range from 0 to 9. Greater than or equal to a rating of 7 is considered “good,” ratings of 5 and 6 are 
considered “fair,” and ratings below 5 are considered “poor” in relation to their condition (PennDOT 2020, 
Pub 408).  
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C H A P T E R  2  

Background 

Different approaches for modeling infrastructure deterioration exist in the literature, including linear 
regression (O’Leary et al., 2012; Zhang and Durango-Cohen, 2014), Markov chain models (Agrawal et al., 
2010; Manafpour et al., 2018), and stochastic duration models (Agrawal et al., 2010; Cox and Matheson, 
2014). Linear models assume that the future condition rating of a bridge deck is deterministic. In reality, 
the evolution of the condition of a bridge deck is considered to be a stochastic process due to the multiple 
stochastic factors that affect the rating (e.g., traffic and weather), which is captured by the latter two models. 
In general, probabilistic models are deemed more appropriate to model and predict the performance of 
concrete bridge decks to account for this stochasticity. 
 
The Markov chain method is the most commonly used method for stochastic modeling of the deterioration 
process. This method aims at modeling the probability that the (discrete) condition of a bridge deck 
decreases; however, it assumes that the deterioration is independent of age, which is a significant limitation 
(Agrawal et al., 2010). Some improvements to the Markov chain approach have been proposed, such as the 
semi-Markov chain (Manafpour et al., 2018). The transition probabilities of semi-Markov chain models can 
be duration dependent, unlike Markov chain processes. However, both Markov chain and semi-Markov 
chain-based approaches still omit censored data, which are typically dominant in the dataset. Distribution-
based duration models typically perform better at predicting deterioration, since time and right-censored 
data can also be incorporated in the models (Agrawal et al., 2010). While Weibull is the most popular 
distribution used for modeling infrastructure, other distributions can also be used within these distribution-
based approaches. For example, the generalized gamma distribution has been used to model the survival 
from AIDS considering different therapies (Cox and Matheson, 2014) or to study the survival of firms 
(Kaniovski and Peneder, 2008).  
 
Additionally, methods that rely solely on the data, such as machine learning methods, can be used to model 
infrastructure deterioration. One study compared five different kinds of data mining techniques for steel 
bridge superstructure deterioration: (1) logistic regression, (2) decision trees, (3) neural network, (4) 
gradient boosting, and (5) support vector machine. The results showed that logistic regression was able to 
obtain the highest prediction accuracy (Contreras-Nieto et al., 2018). Another study only focused on the 
backpropagation-multilayer perceptron (BP-MLP) neural network method for modeling bridge 
deterioration and obtained a prediction accuracy of 75.38% on the test dataset. However, that method was 
not able to incorporate censored data (Huang, 2010). A recent study designed an integrated deterioration 
approach that incorporates a time-based model, a state-based model with the Elman neural network (ENN), 
and a backward prediction model (BPM) for prediction of long-term bridge performance (Bu et al., 2015). 
Another study investigated the use of the recursive partitioning method to develop classification trees that 
predict National Bridge Inventory condition ratings from national bridge elements condition data (Bektas, 
2017). However, the accuracy of these machine learning methods highly relies on the scale of the input 
dataset, and more problematically, the interpretation of the model parameters is a big challenge. 
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As new data become available, the complete reestimation of existing models can be computationally costly 
and drastically change the way the models need to be implemented. Bayesian theory provides a way to 
incorporate newly available data into the prediction model without having to rebuild the entire model. 
Bayesian theory assumes that an a-priori distribution for the parameters exists and updates these a-priori 
assumptions to derive posterior distributions of the parameters based on the available data. Several methods 
that use Bayesian inference to update the parameters of a prediction model have been proposed for models 
with a dependent variable that follows a normal distribution (Bayes and Branco, 2007; Belitser and Ghosal, 
2003) or a log-normal distribution, which can better account for extreme values (Strauss et al., 2008; 
Enrique, 2006). A recent work utilized the Bayesian inference method for a Weibull distribution for the 
reliability analysis of satellites. In that method Beta distributions were used to estimate the parameters of 
the Weibull distribution, which could then be used as an a-priori distribution to update the parameters when 
new data become available (Yang et al., 2018). Similarly, another recent work used the Bayesian inference 
method for a generalized gamma distribution of reliability (de Pascoa et al., 2011). However, neither of 
these works incorporated covariates in the model, thus neither can be utilized to analyze the influence of 
external variables on the failure process. 
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C H A P T E R  3  

Methodology 

INTRODUCTION 
The goal of this project was to model the duration a bridge deck lasts in a given condition rating using a 
survival analysis that can better account for the variability in the inspection data and can self-update as new 
data become available. For these models, the time a bridge deck lasts in a given CR or cumulative truck 
traffic in a given CR is considered as the independent variable. These variables are modeled assuming they 
follow a generalized gamma distribution using an accelerated failure time model. The parameters of this 
model are estimated using Markov chain Monte Carlo (MCMC) models that can provide ranges of 
confidence for the results, and additionally, can be combined with Bayesian inference for updating the 
parameters as new data become available, without reestimating the entire model. The different steps of the 
methodology are discussed below. 

WEIBULL DETERIORATION MODEL 
First, a simple Weibull deterioration model considering the impacts of single attributes of bridge deck 
deterioration is developed, which is easily implementable. A Weibull distribution is found that calculates 
the probability that a bridge will decrease in condition rating given the amount of days it has been at that 
rating. The probability density function (PDF) of the log-normal distribution, 𝑓𝑓(𝑡𝑡), is shown as Equation 
1. 

𝑓𝑓(𝑡𝑡, 𝜆𝜆,𝑘𝑘) = �
𝑘𝑘
𝜆𝜆
�
𝑡𝑡
𝜆𝜆
�
𝑘𝑘−1

𝑒𝑒−�
𝑡𝑡
𝜆𝜆�

𝑘𝑘

𝑡𝑡 ≥ 0

0 𝑡𝑡 < 0
 (1) 

 
where 𝑡𝑡 is the independent variable, in this case, CTT, and  𝜆𝜆 and 𝑘𝑘 are the parameters of the Weibull 
distribution.  
 
The probability of a CR to decrease for a bridge can be modeled by the cumulative distribution function. 
The equation for the cumulative density function of the Weibull distribution, 𝐹𝐹(𝑡𝑡), is shown as Equation 2. 
 

(𝑡𝑡) = 1 − 𝑒𝑒−�
𝑡𝑡
𝜆𝜆�

𝑘𝑘

 (2) 
 
The maximum likelihood estimation approach is used to estimate the parameters of the log-normal 
distribution. 
 
It is possible to use the models developed above to determine the probability that a bridge deck will 
deteriorate given a single attribute. These individual models can further be combined using weighting 
factors to determine the probability that a bridge deck will deteriorate considering combinations of 
attributes. Since the contribution of these attributes to deterioration may not equal in practice, a weight 
factor can be applied to specific attributes such that that attribute can contribute more or less to the 
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deterioriation probability. This allows for expert input when determining the overall deterioration of a 
bridge. The function to calculate the combined deterioration probability is shown as in Equation 3. 
 

𝐶𝐶(𝑡𝑡) =  �𝜔𝜔𝑖𝑖𝐹𝐹𝑖𝑖(𝑡𝑡)

𝑁𝑁

𝑖𝑖

 (3) 

 
where  𝜔𝜔𝑖𝑖 is the weight factor of 𝑖𝑖th attributes and 𝑁𝑁 is the number of attributes considered.  
 
The weights must be determined carefully based on experience. Expert knowledge is needed to reasonably 
allocate the weight of each attribute to make the final weighted deterioration probability close to reality. 
Once the weights are determined, the deterioration probability at a given condition rating after a specific 
sojourn time can be calculated using the log-normal distribution model. Then these deterioration 
probabilities will be weighted together to obtain the probability that a bridge will deteriorate.  

ACCELERATED-FAILURE TIME MODEL 
A more complicated model that utilizes all the data is used next. Survival data analysis aims at modeling 
the duration of time until an event, or failure, happens, defined as the sojourn time. The specific dependent 
variable being modeled in survival analysis is known as the hazard, which is defined as the probability of 
failure at a given time conditional on the fact that failure has not happened until that time. The hazard rate 
function 𝜆𝜆(𝑡𝑡) can be defined as in Equation 4. 
 

 𝜆𝜆(𝑡𝑡) =
𝑓𝑓(𝑡𝑡)
𝑅𝑅(𝑡𝑡)

 (4) 

 
where 𝑓𝑓(𝑡𝑡) is the probability density function of the sojourn time defined as the probability that an event 
lasts at least until time 𝑡𝑡, and 𝑅𝑅(𝑡𝑡) is the reliability (or the survival) function of the sojourn time. Four 
approaches to modeling hazard with covariates exist: (1) parametric families, (2) accelerated failure time, 
(3) proportional hazards, and (4) proportional odds. 
 
Parametric families estimate the parameters of an assumed distribution based on the covariates; however, 
they can be complex and difficult to interpret. Proportional hazards and proportional odds models assume 
that the hazard rate is scaled by a constant covariate. These proportional hazards assumptions can be 
restricting, since they imply that the covariates do not vary with time. On the other hand, accelerated failure 
time models assume that the covariates accelerate or decelerate the failure time. Hence, accelerated failure 
time models were chosen for this work due to their flexibility.  
 
The general form of an accelerated failure time model assumes that the logarithm of the failure time can be 
expressed as a linear function of covariates as follows: 
 
 log(𝑡𝑡) = 𝑿𝑿�𝜷𝜷� + 𝛽𝛽0 (5) 

 
where: 𝑿𝑿� = [1,𝑋𝑋2, . . ,𝑋𝑋𝑘𝑘  ] is the vector of covariates, 𝜷𝜷� = [𝛽𝛽1,𝛽𝛽2, . . ,𝛽𝛽𝑘𝑘  ] is the vector of regression 
coefficients, and 𝛽𝛽0 is the random error term with a given probability distribution function. The distribution 
of the random error determines the resulting shape of the hazard and reliability function. In this study, the 
error term is assumed to follow the generalized gamma distribution (GGD). Below, the steps to modify the 
accelerated failure time methodology to represent a GGD are described. 
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The probability density function of a standard GGD is shown in Equation 6. 
 

 𝑓𝑓(𝑡𝑡) =
𝛽𝛽

𝛤𝛤(𝑘𝑘)𝜃𝜃
�
𝑡𝑡
𝜃𝜃
�
𝑘𝑘𝑘𝑘−1

𝑒𝑒−�
𝑡𝑡
𝜃𝜃�

𝛽𝛽

 (6) 

 
where, 𝛤𝛤(𝑘𝑘) is the gamma function as shown below: 

 𝛤𝛤(𝑘𝑘) =  � 𝑠𝑠𝑘𝑘−1𝑒𝑒−𝑠𝑠 𝑑𝑑𝑑𝑑
∞

0
 (7) 

 
The standard GGD is simple; however, the parameters cannot be easily estimated. Hence, this is 
reparametrized according to Lawless (2011) using new parameters 𝜇𝜇,𝜎𝜎, 𝜆𝜆 as below: 
 

 𝜇𝜇 = 𝑙𝑙𝑙𝑙(𝜃𝜃) +
1
𝛽𝛽
𝑙𝑙𝑙𝑙 �

1
𝜆𝜆2
� (8) 

 𝜎𝜎 =
1

𝛽𝛽√𝑘𝑘
 (9) 

 𝜆𝜆 =
1
√𝑘𝑘

 (10) 

 
Hence, the updated PDF distribution with the new parameters is shown in Equation 11: 
 

 𝑓𝑓(𝑡𝑡) =

⎩
⎪⎪
⎨

⎪⎪
⎧

|𝜆𝜆|
𝜎𝜎𝜎𝜎

1

𝛤𝛤 � 1
𝜆𝜆2�

𝑒𝑒
�
𝜆𝜆𝑙𝑙𝑙𝑙(𝑡𝑡)−𝜇𝜇

𝜎𝜎 +𝑙𝑙𝑙𝑙� 1𝜆𝜆2�−𝑒𝑒
𝜆𝜆𝑙𝑙𝑙𝑙(𝑡𝑡)−𝜇𝜇

𝜎𝜎

𝜆𝜆2 �

𝜆𝜆 ≠ 0

1
𝑡𝑡𝑡𝑡√2𝜋𝜋

𝑒𝑒−
1
2�
𝑙𝑙𝑙𝑙(𝑡𝑡)−𝜇𝜇

𝜎𝜎 �
2

𝜆𝜆 = 0

 (11) 

 
Then, the reliability function can be determined as shown in Equation 12: 
 

 𝑅𝑅(𝑡𝑡) = 1 −� 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑 =  
𝑡𝑡

0

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧

1 − 𝛤𝛤𝐼𝐼 �
1
𝜆𝜆2

;
𝑒𝑒𝜆𝜆

𝑙𝑙𝑙𝑙(𝑡𝑡)−𝜇𝜇
𝜎𝜎

𝜆𝜆2
� 𝜆𝜆 > 0

1 −𝛷𝛷�
𝑙𝑙𝑙𝑙(𝑡𝑡) − 𝜇𝜇

𝜎𝜎 � 𝜆𝜆 = 0

𝛤𝛤𝐼𝐼 �
1
𝜆𝜆2

;
𝑒𝑒𝜆𝜆

𝑙𝑙𝑙𝑙(𝑡𝑡)−𝜇𝜇
𝜎𝜎

𝜆𝜆2
� 𝜆𝜆 < 0 

 (12) 

 
Note that the GGD can be simplified to other well-known distributions such as the Weibull distribution 
(𝝀𝝀=𝟏𝟏), exponential distribution (𝝀𝝀=𝟏𝟏 & 𝝈𝝈=𝟏𝟏), lognormal distribution (𝝀𝝀=𝟎𝟎), or gamma distribution (𝝀𝝀=𝝈𝝈). 
To incorporate the attributes into the model, first the independent variable 𝑡𝑡 is normalized to 𝑍𝑍(𝑡𝑡): 
 

 𝑍𝑍(𝑡𝑡) =
𝑙𝑙𝑙𝑙(𝑡𝑡) − 𝜇𝜇

𝜎𝜎
=

1
𝜎𝜎
𝑙𝑙𝑙𝑙 �

𝑡𝑡
𝜇𝜇
� (13) 



 

 8 r3utc.psu.edu 
 

From this normalized expression, it can be found that 𝜇𝜇 is the scale parameter and 𝜆𝜆 and 𝜎𝜎 are shape 
parameters. So, the scale parameter, 𝜇𝜇, can be replaced with a linear combination of covariates as shown in 
Equation 14. 
 𝜇𝜇 = 𝑒𝑒𝜷𝜷�𝒙𝒙 (14) 

 
Then, the GGD becomes an AFT-GGD, the PDF becomes: 
 

 𝑓𝑓�𝑡𝑡,𝒙𝒙|𝜇𝜇, 𝜆𝜆,𝜷𝜷�� =

⎩
⎪⎪
⎪
⎨

⎪⎪
⎪
⎧

|𝜆𝜆|
𝑒𝑒𝜷𝜷�𝒙𝒙𝑡𝑡

1

𝛤𝛤 � 1
𝜆𝜆2�

𝑒𝑒⎣
⎢
⎢
⎢
⎢
⎡
𝜆𝜆𝑙𝑙𝑙𝑙(𝑡𝑡)−𝑒𝑒𝜷𝜷�𝒙𝒙

𝑒𝑒𝜷𝜷𝜷𝜷
+𝑙𝑙𝑙𝑙� 1𝜆𝜆2�−𝑒𝑒

𝜆𝜆𝑙𝑙𝑙𝑙(𝑡𝑡)−𝑒𝑒𝜷𝜷�𝒙𝒙
𝑒𝑒𝜷𝜷𝜷𝜷

𝜆𝜆2

⎦
⎥
⎥
⎥
⎥
⎤

𝜆𝜆 ≠ 0

1
𝑡𝑡𝑒𝑒𝜷𝜷�𝒙𝒙√2𝜋𝜋

𝑒𝑒
−12�

𝑙𝑙𝑙𝑙(𝑡𝑡)−𝑒𝑒𝜷𝜷�𝒙𝒙

𝑒𝑒𝜷𝜷𝜷𝜷
�
2

𝜆𝜆 = 0

 (15) 

 
where, 𝒙𝒙 is a vector of attribute values, 𝜷𝜷� is a vector of coefficients for different attributes, 𝑡𝑡 is the 
independent variable, and 𝜎𝜎, 𝜆𝜆 are shape parameters. 

Estimating the Parameters 
The parameters of the model, 𝜎𝜎, 𝜆𝜆 𝑎𝑎𝑎𝑎𝑎𝑎 𝜷𝜷�, are estimated using an MCMC with Bayesian inference. To do 
so, first the likelihood function, which describes the probability of obtaining the observations in a dataset 
given the parameter estimates, needs to be estimated. The likelihood function is composed of two parts 
depending on the available sojourn time data: (1) the likelihood function of the uncensored data (i.e., data 
where the observation period covers both the beginning and the end of a condition rating) and (2) the 
likelihood function of censored data (i.e., either the beginning or the end of a condition is not observed). 
The likelihood function of the uncensored data can be calculated as the probability density function, while 
the likelihood function of the censored data can be calculated using the reliability function. Thus, the final 
likelihood function of the whole dataset can be expressed as a product of the probability density functions 
of the uncensored data and the reliability functions of the censored data, see Equation 16. 
 

 𝑃𝑃�𝐷𝐷�𝜎𝜎, 𝜆𝜆,𝜷𝜷�� =  �𝑓𝑓(𝑡𝑡𝑖𝑖|𝜎𝜎, 𝜆𝜆,𝜷𝜷�)
𝑖𝑖∈𝐷𝐷𝑢𝑢

� 𝑅𝑅(𝑡𝑡𝑖𝑖|𝜎𝜎, 𝜆𝜆,𝜷𝜷�)
𝑖𝑖∈𝐷𝐷𝐶𝐶

 (16) 

 
where, 𝐷𝐷𝑢𝑢is the data set of all uncensored data, 𝐷𝐷𝐶𝐶  is the data set of all censored data, 𝑓𝑓 is the probability 
density function, and 𝑅𝑅 is the reliability function. 
 
The MCMC method assumes that the GGD parameters 𝜎𝜎, 𝜆𝜆 and the coefficients for the covariates, 𝜷𝜷�, 
initially follow an unknown distribution. Hence, to be able to estimate these coefficients, a prior distribution 
for these parameters is estimated. In this study, the prior distributions are assumed to be uniform, as shown 
in Equation 17. 

 𝜎𝜎~𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑎𝑎𝜎𝜎 , 𝑏𝑏 𝜎𝜎 ), 𝜆𝜆~𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑎𝑎𝜆𝜆, 𝑏𝑏𝜆𝜆),𝛽𝛽𝑖𝑖~𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵�𝑎𝑎𝛽𝛽𝑖𝑖 , 𝑏𝑏𝛽𝛽𝑖𝑖� (17) 

where, 𝛽𝛽𝑖𝑖 are elements of 𝜷𝜷�, 𝑎𝑎∗, 𝑏𝑏∗ are hyper-parameters of the prior distribution, there are assumed to 
follow a uniform distribution to initialize the updating approach.  
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The MCMC method calculates a posterior distribution using Bayesian inference as below:  

 𝑓𝑓𝑋𝑋�𝜎𝜎, 𝜆𝜆,𝜷𝜷��𝐷𝐷� = 𝑘𝑘𝑘𝑘�𝐷𝐷��𝜎𝜎, 𝜆𝜆,𝜷𝜷��𝑓𝑓𝑋𝑋(𝜎𝜎, 𝜆𝜆,𝜷𝜷�) (18) 

where 𝑓𝑓𝑋𝑋(𝜎𝜎, 𝜆𝜆,𝜷𝜷�)is the PDF of the prior distribution of parameters, 𝑃𝑃�𝐷𝐷��𝜎𝜎, 𝜆𝜆,𝜷𝜷��is the likelihood function 
that data D is observed, 𝑓𝑓𝑋𝑋�𝜎𝜎, 𝜆𝜆,𝜷𝜷��𝐷𝐷� is the PDF of the parameters after observing data 𝐷𝐷, and 𝑘𝑘 is a 
normalizing constant. 
 
Since there is no analytical expression of the posterior distribution function, the distribution of the 
parameters 𝜎𝜎, 𝜆𝜆 𝜷𝜷� can be calculated using a heuristic algorithm or MCMC sampling. Here a standard 
Metropolis Hasting MCMC method is used. The MCMC method will generate samples and decide whether 
to accept it for the final distribution calculations with a probability equal to the acceptance ratio. The 
standard Metropolis Hasting MCMC method has an acceptance ratio that is determined using Equation 19. 
 

 𝛼𝛼 = 𝑚𝑚𝑚𝑚𝑚𝑚 �1,
𝑓𝑓(𝑥𝑥′)𝑝𝑝(𝑥𝑥|𝑥𝑥′)
𝑓𝑓(𝑥𝑥)𝑝𝑝(𝑥𝑥′|𝑥𝑥)� (19) 

 
where, the 𝑥𝑥′ is the new sample and 𝑥𝑥 is the current sample, 𝑓𝑓(𝑥𝑥′) and 𝑓𝑓(𝑥𝑥) is the PDF of new sample, 𝑥𝑥′, 
and current sample, 𝑥𝑥, respectively; 𝑝𝑝(𝑥𝑥|𝑥𝑥′) is the transition probability from sample 𝑥𝑥′ to 𝑥𝑥, and similar 
as 𝑝𝑝(𝑥𝑥′|𝑥𝑥). This acceptance ratio is chosen to ensure that samples with higher PDF values are more likely 
to be accepted, thus allowing the samples to cluster around the optimal value. 
 
When the sample dimension is high, the new sample, 𝑥𝑥′, can easily drift away from the optimal solution, 
which will lead to a very small 𝑓𝑓(𝑥𝑥′) and thus have a low acceptance ratio. In order to increase the 
acceptance ratio and improve the efficiency of the method, the standard acceptance ratio was slightly 
modified to accelerate the sampling process, see Equation 20. 
 

 𝛼𝛼 = 𝑚𝑚𝑚𝑚𝑚𝑚 �1,
𝑙𝑙𝑙𝑙𝑙𝑙�1 + 𝑓𝑓(𝑥𝑥′)�𝑝𝑝(𝑥𝑥|𝑥𝑥′)
𝑙𝑙𝑙𝑙𝑙𝑙�1 + 𝑓𝑓(𝑥𝑥)�𝑝𝑝(𝑥𝑥′|𝑥𝑥)

� (20) 

Bayesian Updating  
The above method can be implemented whether or not historical information is available. When there is no 
historical information, a uniform distribution can be assumed as the prior distribution for each parameter. 
The posterior distribution of parameters is calculated based on the new data and the assumed prior 
distribution as in Equation 21. 

 

𝑓𝑓𝑋𝑋(𝜎𝜎, 𝜆𝜆,𝜷𝜷|𝐷𝐷) ∝ 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑎𝑎𝜎𝜎 , 𝑏𝑏𝜎𝜎) × 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑎𝑎𝜆𝜆, 𝑏𝑏𝜆𝜆) × �𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵�𝑎𝑎𝛽𝛽𝑖𝑖 , 𝑏𝑏𝛽𝛽𝑖𝑖�
𝑖𝑖

× �𝑓𝑓(𝑡𝑡𝑖𝑖|𝜎𝜎, 𝜆𝜆,𝜷𝜷)
𝑖𝑖∈𝐷𝐷𝑢𝑢

� 𝑅𝑅(𝑡𝑡𝑖𝑖|𝜎𝜎, 𝜆𝜆,𝜷𝜷)
𝑖𝑖∈𝐷𝐷𝐶𝐶

 
(21) 

where, the ∏ 𝑓𝑓(𝑡𝑡𝑖𝑖|𝜎𝜎, 𝜆𝜆,𝜷𝜷)𝑖𝑖∈𝐷𝐷𝑢𝑢 ∏ 𝑅𝑅(𝑡𝑡𝑖𝑖|𝜎𝜎, 𝜆𝜆,𝜷𝜷)𝑖𝑖∈𝐷𝐷𝐶𝐶  is the likelihood function of new data, 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑎𝑎𝜎𝜎 , 𝑏𝑏𝜎𝜎) ×
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑎𝑎𝜆𝜆, 𝑏𝑏𝜆𝜆) × ∏ 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵�𝑎𝑎𝛽𝛽𝑖𝑖 , 𝑏𝑏𝛽𝛽𝑖𝑖�𝑖𝑖  is an assumed prior distribution of each parameters. 
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When a model already exists, the updated parameters are calculated using MCMC as described above 
utilizing only the newly available data. However, the posterior distribution calculated using the previously 
available data becomes the prior distribution for the new model, see Equation 22. 
 

 𝑓𝑓𝑋𝑋(𝜎𝜎, 𝜆𝜆,𝜷𝜷|𝐷𝐷) ∝ 𝑓𝑓(𝜎𝜎, 𝜆𝜆,𝜷𝜷) × �𝑓𝑓(𝑡𝑡𝑖𝑖|𝜎𝜎, 𝜆𝜆,𝜷𝜷)
𝑖𝑖∈𝐷𝐷𝑢𝑢

� 𝑅𝑅(𝑡𝑡𝑖𝑖|𝜎𝜎, 𝜆𝜆,𝜷𝜷)
𝑖𝑖∈𝐷𝐷𝐶𝐶

 (22) 

 
where, 𝑓𝑓(𝜎𝜎, 𝜆𝜆,𝜷𝜷) is the distribution of parameters calculated based on previously available data, and now 
is treated as the prior distribution in the updating process, and 𝑓𝑓𝑋𝑋(𝜎𝜎, 𝜆𝜆,𝜷𝜷|𝐷𝐷) is the distribution of the 
parameters that combine the previously available data as well as the newly available data. 

Addressing Computational Issues 
There are some computational limitations to estimating the above described model specifically for large 
datasets. Three major concerns are: (1) the likelihood function approaches 0 as the likelihood for more data 
is considered, (2) the likelihood function is fairly flat around the optimal solution, and (3) the AFT-GGD 
approaches infinity when the 𝜆𝜆 is small. The modifications to the model to address these issues are discussed 
below.  

Likelihood function 

As the number of available data increases, the likelihood value goes to 0 and the log-likelihood value to 
infinity. This leads to the MCMC method failing to converge. See for example Figure 2, which shows the 
likelihood distribution as a function of 𝜇𝜇 and 𝜆𝜆 while keeping 𝜎𝜎 constant for an illustration of this problem.  
 

 
Figure 2. Likelihood distribution of the generalized gamma distribution.  
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From Figure 2, it can be observed that: (1) when 𝜆𝜆 𝑜𝑜𝑜𝑜 𝜇𝜇 decreases, the likelihood function approaches 
infinity, and (2) the likelihood function is flat around the optimal solution (shown by the red circle as 
estimated by maximum likelihood estimation). Both of these issues hinder the ability of the MCMC method 
to converge. Hence, the likelihood function is transformed into a logarithmic space as shown in Equation 
23. 

 𝐿𝐿𝐿𝐿𝐿𝐿_𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿ℎ𝑜𝑜𝑜𝑜𝑜𝑜 = � 𝑙𝑙𝑙𝑙𝑙𝑙�𝑓𝑓(𝑑𝑑𝑢𝑢)�
𝑑𝑑𝑢𝑢∈𝐷𝐷𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢

+  � log�𝑓𝑓(𝑑𝑑𝑐𝑐)�
𝑑𝑑𝑐𝑐∈𝐷𝐷𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

 (23) 

 
Next, the maximum log-likelihood value for all parameters was calculated and subtracted from the log-
likelihood value. Finally, the following likelihood function was used in the MCMC calculations: 

 𝐿𝐿 = 𝑒𝑒𝑒𝑒𝑒𝑒 �𝐿𝐿𝐿𝐿𝐿𝐿_𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿ℎ𝑜𝑜𝑜𝑜𝑜𝑜 − max
∀ 𝜇𝜇, 𝜎𝜎,𝜆𝜆

(𝐿𝐿𝐿𝐿𝐿𝐿_𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿ℎ𝑜𝑜𝑜𝑜𝑜𝑜)� (24) 

Addressing issues with the gamma function 

In the PDF function of the GGD shown in Equation 15, when 𝜆𝜆 approaches 0, 1
𝜆𝜆2

 starts approaching infinity, 
and the gamma function may overflow. Tests had shown that when 𝜆𝜆 is less than 0.05, the gamma function 
will return infinity in any common language (e.g., Python, MATLAB). 
In order to overcome this overflow problem, the function shown in Equation 15 was transformed. Firstly, 
the gamma function can be calculated as below. 
 

 𝛤𝛤 �
1
𝜆𝜆2
� = 𝑒𝑒

𝑙𝑙𝑙𝑙𝑙𝑙�𝛤𝛤� 1𝜆𝜆2�� = 𝑒𝑒
∑ 𝑙𝑙𝑙𝑙𝑙𝑙� 1𝜆𝜆2−𝑖𝑖�+𝑙𝑙𝑙𝑙𝑙𝑙�Γ�

1
𝜆𝜆2−k�� 𝑘𝑘

𝑖𝑖=1  (25) 

 
Using Equation 25 and substituting it in Equation 15, the PDF can be transformed as Equation 26 (when 
𝜆𝜆 ≠ 0): 

 
𝑓𝑓 =

|𝜆𝜆|
𝑒𝑒𝛽𝛽𝛽𝛽𝑡𝑡

𝑒𝑒⎣
⎢
⎢
⎢
⎢
⎡
𝜆𝜆𝑙𝑙𝑙𝑙(𝑡𝑡)−𝑒𝑒𝛽𝛽𝛽𝛽

𝑒𝑒𝛽𝛽𝛽𝛽
+𝑙𝑙𝑙𝑙� 1𝜆𝜆2�−𝑒𝑒

𝜆𝜆𝑙𝑙𝑙𝑙(𝑡𝑡)−𝑒𝑒𝛽𝛽𝛽𝛽

𝑒𝑒𝛽𝛽𝛽𝛽

𝜆𝜆2 −∑ 𝑙𝑙𝑙𝑙𝑙𝑙� 1𝜆𝜆2−𝑖𝑖�+𝑙𝑙𝑙𝑙𝑙𝑙�𝛤𝛤�
1
𝜆𝜆2−𝑘𝑘�� 𝑘𝑘

𝑖𝑖=1

⎦
⎥
⎥
⎥
⎥
⎤

 
(26) 

 
After this transformation, the optimal solution has a high likelihood and the distribution of the new 
likelihood is shown in Figure 3. It can be seen that with this transformation non-optimal solutions have a 
likelihood value close to zero, whereas the optimal solution has a likelihood value that is distinctly different, 
improving the computational efficiency of the MCMC method. 
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Figure 3. Transformed likelihood distribution of the generalized gamma function. 
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C H A P T E R  4  

Data Processing and Exploration 

INTRODUCTION 
Approximately 51,463 bridge deck inspection CRs stemming from over 22,000 bridges in Pennsylvania 
were utilized in order to model the data (PennDOT, 2009). The time that a bridge deck spends in a given  
condition rating, the sojourn time, was extracted from the data. In other words, the time difference between 
two changes in the condition rating for a given bridge deck was calculated. Due to the large volume of data, 
filters were applied to ensure accuracy and consistency to compare deck ratings and sojourn times. Filters 
were also used to lower the standard deviation of the data. These filters include:  

(a) removing miscoded, duplicate, and mismatching data;  
(b) removing data if a bridge deck did not maintain a particular condition rating for two consecutive 
inspection points; 
(c) removing data with more than 1,500 days between inspections; 
(d) removing data for bridges without at least three total inspection points; and 
(e) removing data if bridge deck condition reduced by more than two ratings in between inspections.  

 
The available attributes from BMS2 are summarized in Table 1.  
 
The inspection data were first preprocessed and cleaned. First, if a CR increased or decreased for only a 
single inspection, this data point was corrected to the before and after condition rating. Also, data that did 
not have an inspection data were discarded. If the CR was not recorded for two consecutive inspections, 
data were discarded (to eliminate possible errors in CR reporting). Moreover, if there were more than 1,500 
days (4 years) between inspections and the CR changes, this data point was discarded (since the actual 
deterioration time would be unknown). Finally, if the CR changed more than two levels (higher or lower) 
in between inspections it was assumed that either a maintenance activity or a traffic accident had happened. 
These data were treated as censored, and an indicator variable “Event” was included for these data. 
 
After cleaning the raw data, valid information for 18,354 bridges was obtained, and a total of 44,086 sojourn 
times were extracted and classified given the CR. In order to choose a suitable model to predict the lifecycle 
performance of bridge decks, a non-parametric analysis of these sojourn times was first conducted. First, 
summary statistics for the distribution of the sojourn times were determined as shown in Table 2. 
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Table 1. Attributes description and values distribution. 

Attributes Summary Values (Counts)* 
DISTRICT  District number District 1 (2707); District 2 (2102); District 3 (3171); 

District 4 (2200); District 5 (2215); District 6 (2912); 
District 8 (5369); District 9 (3497); District 10 (2443); 
District 11 (2672); District 12 (2817).  

DEPT_DKSTRUC
_TYP  

Deck structure type Concrete - Reinforced (26324);  

DEPT_MAIN_MAT
ERIAL_TYPE  

Main materials type Steel (8531); Concrete (Cast in Place) (6205); 
Concrete (Precast) (537); Prestressed Precast 
Concrete (P/S) (15774); Concrete Encased Steel 
(982).  

DEPT_MAIN_PHY
SICAL_TYPE  

Physical makeup of the 
main span of the 
structure 

Reinforced (6744); Pretensioned (15600); Rolled 
Sections (4787); Rolled Sections with Cover Plates 
(1174); Combination, Rolled Sections/Cover-Plates 
(334); Other (3313).  

DEPT_MAIN_SPA
N_INTERACTION  

Span interaction for the 
main span of the 
structure 

Simple, Non-Composite (12042); Simple, Composite 
(15377); Continuous, Non-Composite (882); 
Continuous, Composite (2751); Other (1053).  

DEPT_MAIN_STR
UC_CONFIG  

Structural configuration 
for the main span of the 
structure 

Slab (Solid) (2378); T-Beams (3985); I Beams (11653); 
Box Beam - Single (5681); Box Beam - Adj (6614); I-
Welded Beams (410); Girder Weld/Deck (722).  

DK_PROTECT  Deck protection type None (18171); Epoxy Coated Reinforcing (12439); 
Galvanized Reinforcing (461); Unknown (804).  

DECK_REBAR_T
YPE  

Deck rebar type Bare Rebar Type (12960); Galvanized Rebar Type 
(561); Epoxy Rebar Type (11738); Unknown (6794).  

MAIN_SPANS  Main bridge spans 
(number of spans in 
main unit) 

1 (20209); 2 (4954); 3 (4167); 4 (1416); 5 (585).  

DKMEMBTYPE  Waterproofing 
membrane on the 
bridge main span 

None (26722); Preformed Fabric (3816); Other (368). 

DKSURF_TYPE  Wearing surface types 
on the bridge main 
span 

Concrete (14137); Concrete Overlay (3406); Epoxy 
Overlay (974); Bituminous (13340).  

HAPPENED  If special event 
happened 

Sharply Decrease (3497); Normal (22332); Sharply 
Increase (6212). 

LENGTH Bridge length Total overall length of the bridge 
DECK WIDTH Bridge deck width. Bridge deck width 
ADTT Average daily truck 

traffic 
Average daily truck traffic 

*The Values (Counts) only show the values whose count is larger than 1% of the whole dataset. 
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Table 2. Statistic of sojourn times (in days) of bridge decks. 

Condition 
Rating 

Censored 
Count 

Censored 
Mean 

Censored 
Std 

Complete 
Count 

Complete 
Mean 

Complete 
Std 

CR 1 19 2,809 2,509 2 1,040 348 
CR 2 104 1,690 1,263 13 1,818 1,124 
CR 3 1,007 2,022 1,709 170 2,034 1,421 
CR 4 3,132 3,197 2,410 783 2,581 1,717 
CR 5 6,016 4,010 2,759 2,317 2,935 1,794 
CR 6 7,264 4,024 2,622 3,865 2,977 1,719 
CR 7 8,636 3,957 2,603 3,817 3,054 1,760 
CR 8 3,234 2,610 1,927 2,612 2,501 1,443 
CR 9 654 1,420 1,106 381 1,747 1,049 
Total 30,066   13,960   

 
Looking at Table 2, it can be observed that only a small number of bridges deteriorated to CR 4 or worse, 
as typically when a deck enters CR 4, it is designated for an immediate replacement and CR 4 signifies the 
end of the useful service life. To better understand the distribution of both complete and right-censored 
sojourn times a violin plot, as shown in Figure 4, was utilized. 

 

 
Figure 4. Distribution of complete and right-censored data for different CRs. 

From Figure 4, it can be seen that complete data were mostly available for CR 5 to CR 8, and the distribution 
of complete data follows a bathtub shape. Due to the lack of data for CRs 3, 2, and 1, this study only utilized 
data for bridge decks with CR greater than 3.  
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First, only the non-censored data were explored. The mean sojourn time for a bridge was found to be 2,849 
days (7.7 years), with a skewed right distribution and a skewness (σ) value of 0.7. The average standard 
deviation for the data is 1,621 days (4.4 years). The typical lifecycle of a bridge deck is as follows: a short 
sojourn time at CR 9, gradually increasing sojourn times at CR 8, and the largest sojourn times at CR 7 and 
CR 6, and then gradually decreasing sojourn times until the bridge is no longer serviceable. While this trend 
is generally observable, the duration each bridge deck spends in each CR depends on many of the physical 
attributes of the bridge (e.g., the amount of truck traffic the bridge is exposed to and its year of construction).  
While sojourn time can be a good reflection of the reliability of a bridge deck, it is significantly impacted 
by the amount of truck traffic that a bridge deck experiences. The average daily truck traffic varies a lot 
across different bridges. Moreover, the expected average daily truck traffic will influence the design of a 
bridge deck. Consider the deck surface type as an example. Looking at the data, while 55.1% of bridges 
with ADTT less than 1,000 vehicles per day used a bituminous surface type, only 23.8% of bridges with 
ADTT larger than 1,000 veh/day used bituminous and instead 65.5% of them used a concrete surface. This 
indicates that the average daily truck traffic should be taken into consideration when analyzing the 
reliability of a bridge. Hence, in addition to the sojourn times, the cumulative truck traffic (CTT), defined 
as the product of the sojourn time and average daily truck traffic, is also analyzed. In other words, the 
cumulative truck traffic experienced until a change in the CR is analyzed as a function of the different 
attributes of the bridge deck.  

REBAR TYPE 
Three different rebar types used in bridge decks were compared: bare, epoxy-coated, and galvanized. The 
average sojourn for all three rebar types is approximately 7 years. However, the bare rebar type slightly 
outperformed the other two types for most CRs except for CR 8, see Figure 5a. On the other hand, there is 
a significant difference between the three rebar types in terms of number of bridges and average daily truck 
traffic, see Figures 5b and c, respectively. From Figure 5b, it can be observed that there are few bridge 
decks that use galvanized rebar across PA, and most of the bridge decks with bare rebar are in CR 6 or 
below. On the other hand, many of the bridges with larger CRs (e.g., CR 7 and above) have epoxy rebar. 
Furthermore, Figure 5c shows that the average daily truck traffic on bridge decks with galvanized rebar or  
epoxy rebar is much higher than on bridge decks with bare rebar at CR 6 and CR 7. This indicates that in 
areas with large truck traffic, bridge decks were more often designed with  epoxy or galvanized rebars. Note 
that the data for CR 9 are not reliable since too few bridges are inspected in the condition rating, especially 
for bridge decks with bare rebar. Thus, considering the cumulative truck traffic until a change in CR, Figure 
5d shows that bridge decks with epoxy or galvanized rebar have a higher reliability compared to the bare 
rebar bridges. However, the reliability of bridge decks with epoxy or galvanized rebar decreases faster than 
bridge decks with bare rebar when the bridge deck starts to deteriorate to CR 5 or lower. The reason is that 
galvanized coated rebar does not perform as well when concrete is cracked, and at this condition rating 
most bridge decks have cracks and delamination (Prozzi and Madanat, 2000; Guler and Madanat, 2011). 
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(d) Cumulative Truck Traffic 

 
Figure 5. Distribution for rebar type by condition rating of: (a) sojourn time,  

(b) number of bridges, (c) average daily truck traffic, and (d) cumulative truck traffic. 

SPAN NUMBER 
Single-span bridges were compared to multi-span bridges in order to see trends in deterioration. The 
average deck length of a single-span bridge is 42 ft, compared to 278 ft for a multi-span bridge. The sojourn 
time distributions for the two types of bridges for different CR values are shown in Figure 6a. From the 
sojourn time distribution, it can be found that for most condition ratings a single-spanned bridge has a 
longer sojourn time than its multi-spanned counterpart, with the greatest difference being a 21% increase 
in sojourn time at a condition rating of 9.  However, this does not necessarily indicate that a single-span 
bridge is more reliable than a multi-span bridge. Considering the number of bridges (see Figure 6b) and the 
average daily truck traffic (see Figure 6c), it can be seen that while there are more single-span bridges, the 
multi-span bridges carry many more trucks. This implies that the multi-span bridges are mostly constructed 
in areas with heavy truck traffic. Finally, Figure 6c shows that at all CRs, multi-span bridges can support a 
larger cumulative truck traffic compared to single-span bridges before deteriorating. 
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(c) Average Daily Truck Traffic (d) Cumulative Truck Traffic 

Figure 6. Distribution for span type by condition rating of: (a) sojourn time, (b) number of bridges, 
(c) average daily truck traffic, and (d) cumulative truck traffic. 

SURFACE TYPE 
Overlays are used to remedy spalling and cracking for deteriorated bridge surfaces. They are used to repair 
the deck surface without having to make significant repairs to the bridge, and an overlay will typically 
increase a bridge’s condition rating and also extend its service life. Comparing the sojourn times for the 
three different overlay materials used (concrete, asphalt, and epoxy) it can be seen that bridge decks that 
have an asphalt overlay have on average an 8.8% greater sojourn time, see Figure 7a. Moreover, this 
difference increases to 30.3% when inspecting bridges at ratings of 8 or 9. However, only a small number 
of bridges have an epoxy overlay (see Figure 7b) and these bridges have a larger daily truck traffic compared 
to bridges with concrete or asphalt overlay (see Figure 7c). Hence, when considering the cumulative truck 
traffic it can be seen that bridges with epoxy overlay have the highest reliability, while bridges with asphalt 
overlay have the lowest reliability (see Figure 7d). While bituminous acts as a protective layer that prevents 
accelerated deterioration (Tabatabai et al., 2011), once the bridge has been exposed to external elements 
such as salts and weathering, asphalt experiences similar failure methods, including fatigue cracking, 
rutting, and stripping. Hence, the asphalt overlay does not perform as well as epoxy overlay.  
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(c) Average Daily Truck Traffic (d) Cumulative Truck Traffic 

Figure 7. Distribution for surface type by condition rating of: (a) sojourn time, (b) number of 
bridges, (c) average daily truck traffic, and (d) cumulative truck traffic. 

YEAR CONSTRUCTED 
The data provided by PennDOT has inspections that started in 1985. These bridges can be grouped into 
three periods based on their construction year: (1) before 1943, (2) 1943-1980, and (3) post-1980 (see 
Figure 8).  
 

 
Figure 8. Construction year of all bridges. 

As technology developed and the traffic environment changed, the bridges constructed during these 
different periods have different performances. Based on the results, as expected the older bridges spent 
more time in lower condition ratings and the newer bridges spent more time in higher condition ratings (see 
Figure 9a). Additionally, there were more data from lower condition ratings from older bridges and more 
data from newer bridges in high condition ratings (see Figure 9b). However, the data show that the bridges 
built between 1943 and 1980 are the ones that carry most of the truck traffic (see Figure 9c). Hence, when 
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comparing the cumulative traffic load in each condition rating it can be seen that the most reliable bridges 
are those that were built between 1943 and 1980 (see Figure 9d). This is likely due to the generally larger 
truck traffic carried by these bridges.  
 

  
(a)  Sojourn Time (b) Number of Bridges 

  
(c) Average Daily Truck Traffic (d) Cumulative Truck Traffic 

Figure 9. Distributions for different construction years by condition rating of: (a) sojourn time,  
(b) number of bridges, (c) average daily truck traffic, and (d) cumulative truck traffic. 

Based on the Kaplan-Meier estimator (Kaplan and Meier, 1958), the reliability of different CRs was 
calculated by incorporating all uncensored data. The non-parametric reliability for duration, 𝑡𝑡, was 
calculated as shown in Equation 27. 
 

 𝑅𝑅�(𝑡𝑡) = �
𝑛𝑛𝑖𝑖 −𝑚𝑚𝑖𝑖

𝑛𝑛𝑖𝑖𝑖𝑖

 (27) 

 
where, 𝑛𝑛𝑖𝑖 is the number of sojourn times that are greater than or equal to time  𝑡𝑡𝑖𝑖 and 𝑚𝑚𝑖𝑖 is the number of 
sojourn times that are exactly equal to 𝑡𝑡𝑖𝑖.  
 
The real deterioration pattern calculated using the Kaplan-Meier estimator are plotted in Figure 10 as a blue 
curve. The fitting curve of each distribution is plotted as an orange curve in Figure 10. 
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(a) (b) (c) 
 
 

 
(d) (e) (f) 

 
Figure 10. Estimated reliability curves of different distributions compared to the real deterioration 
pattern: (a) Weibull distribution, (b) exponential distribution, (c) log-normal distribution, (d) log-

logistic distribution, (e) piecewise exponential distribution, and (f) generalized gamma 
distribution. 

From Figure 10, it can be seen that Weibull distribution and generalized gamma distribution achieved better 
results compared to other distributions. The relative errors are as follows: 
 

a) Weibull distribution: 4.0%  
b) Exponential distribution: 49.7% 
c) Log-normal distribution: 13.2% 
d) Log-logistic distribution: 14.3% 
e) Piecewise exponential distribution: 49.8% 
f) Generalized gamma distribution: 8.7% 

 
Looking at these results, it can be seen that the Weibull distribution can predict the reliability of bridge 
decks (i.e., the probability that a bridge will decrease in CR given the number of days it has already been 
at that rating) with the lowest relative error. 
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C H A P T E R  5  

Findings of the Weibull Deterioration Model 

The Weibull deterioration model was then used to evaluate the deterioration at individual CRs (see Figure 
11). The results show that bridge decks in good condition (e.g., CR9 and CR8) quickly deteriorate to a 
lower CR. As the CR decreases, such as CR7, CR6, and CR5, bridge decks spend a longer time at that CR. 
These bridge decks have the most reliable CRs with the slowest deterioration. However, at CR 4 bridge 
decks become unreliable again and the sojourn times decrease. These results suggest that the best time to 
perform bridge rehabilitation or maintenance is before the bridge deteriorates to a poor condition to avoid 
the unreliable CR 4.   

 
Figure 11. Prediction of Weibull model for each condition rating. 

The Weibull distribution was then used to develop deterioration models for individual significant attributes 
for all condition ratings. Eleven models were developed for the bridge deck rebar type, main bridge spans, 
wearing surface type, and year built at each condition rating, and 6 condition ratings (i.e., CR 4 - CR 9) are 
modeled in this way. In total 66 models were developed for bridges with different attribute values at 
different condition ratings. The parameter estimation results of the different models for CR 7 are shown in 
Table 3.  From Table 3, it can be observed that the standard error of each parameter is small and the p-value 
is ~0, which implies that the model achieved good performance. 
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Table 3. Model parameter estimation results of CR 7. 

Attribute 
Values 𝝁𝝁 

Standard 
Error of  

𝝁𝝁 
P-Value of  

𝝁𝝁 𝝈𝝈 
Standard 
Error of  

𝝈𝝈 
P-Value of  

𝝈𝝈 

Bridge Deck Rebar Type 
Bare Rebar 0.77 0.04 0.00 0.59 0.01 0.00 
Galvanized 

Rebar  1.74 0.51 0.15 0.66 0.10 0.00 
Epoxy Rebar 1.07 0.09 0.42 0.60 0.02 0.00 

Main Bridge Spans (Number of Spans in Main Unit) 
Single Span 0.46 0.03 0.00 0.57 0.01 0.00 
Multi-Span 1.19 0.07 0.01 0.61 0.02 0.00 

Wearing Surface Types on the Bridge Main Span 
Concrete 0.68 0.05 0.00 0.55 0.02 0.00 

Bituminous 0.47 0.03 0.00 0.60 0.01 0.00 
Epoxy Overlay 2.39 0.49 0.00 0.71 0.08 0.00 

Year Built 
Before1943 0.35 0.03 0.00 0.64 0.02 0.00 
1943-1980 0.92 0.05 0.10 0.56 0.01 0.00 
Post 1980 0.72 0.08 0.00 0.61 0.03 0.00 

 
The deterioration of the bridge can then be calculated for a combination of attributes based on the weights 
as shown in Table 4 (note that the weights are used as an example to illustrate the approach and are not 
suggested weights).  

Table 4. Combined prediction of deterioration probability of the bridge. 

Attribute Value CR Sojourn 
Time 

Average 
Daily 
Truck 
Traffic 

Cumu-
lative 
Truck 
Traffic 

Deterior-
ation  

Probability 
Weight 

Overall 
Deterior-

ation 
Probability 

Rebar Type Galvanized 

7 2,000 
(days) 

1,000 
(vehs/ 
day) 

2 
(million 
vehs) 

0.70 1 

0.81  

Span 
Number 

Single 
Span 0.89 1 

Surface 
Type Asphalt 0.79 1 

Year 
Constructed 1990 0.86 1 

 
 
From Table 4, it can be seen that different attributes contribute to the deterioration probability 
independently, hence, the weighting factors play a large role in determining the final deterioration of the 
bridge. In fact, when the weight factors change, the deterioration of the bridge varies correspondingly. 
Figure 12 shows the change in overall deterioration of the bridge when the weight factors for different 
attributes vary from 0.1 to 2.0, keeping all other weight factors at 1. It can be seen that for this example, 
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increasing the weight of the rebar type or surface type decreases the overall deterioration probability, 
whereas increasing the weight of the span number or the year constructed increases the overall deterioration 
of the bridge. Also, the overall deterioration of the bridge is bounded by the minimum and maximum 
deterioration probability observed from the individual attributes. Note that these trends will be different 
when determining the overall deterioration of different bridges.  

 

Figure 12. Sensitivity analysis of weights of different attributes. 
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C H A P T E R  6  

Findings of the Accelerated-failure Time 
Model 

To obtain results using the proposed methodology, first the appropriate dependent variable using the 
available data was determined. Next, the fit of a generalized gamma distribution was compared to other 
possible distributions to verify that the proposed methodology fits the data best. To do so, only one variable, 
specifically the rebar type was considered, and the accuracy of the predictive model was analyzed. Next, 
all the attributes that are significant in predicting sojourn times were added to the model, and the influence 
of different attributes on the deterioration pattern were analyzed. Finally, the applicability of the Bayesian 
updating method was demonstrated. These steps are discussed in four consecutive subsections. 

CHOOSING THE DEPENDENT VARIABLE 
There were two candidates for choosing the dependent variable: (1) the time until the CR changes or (2) 
the total vehicle loading until the CR changes, or the cumulative truck traffic (CTT). Both of these variables 
could predict deterioration of bridge decks. However, since the purpose of this study was to analyze the 
reliability of bridges considering different attributes, time may not accurately reflect the reliability. In 
practice, the materials selections for bridge construction and repairs are often determined considering verity 
of factors, for example, average daily truck traffic. Consider the deck surface type as an example. Looking 
at the data, while 55.1% of bridges with ADTT less than 1,000 vehicles per day used the bituminous surface 
type, only 23.8% of bridges with ADTT larger than 1,000 vehicles per day used bituminous and instead 
65.5% of them used a concrete surface. Hence, the average time until a change in CR of bridges with 
bituminous surface is larger than that for epoxy overlay and bituminous, as shown in Figure 13, even though 
this might not be due to the type of surface material (Michelle, 2018). 
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Figure 13. Deterioration pattern with time until change in CR as the independent variable. 

To correct this deviation, the CTT was calculated by multiplying the time until a change in the CR and the 
average daily truck traffic to reflect the cumulative traffic loading on the bridge. The survival probability 
calculated according to the CTT is shown in Figure 14. From Figure 14, it can be observed that an epoxy 
overlay has the highest reliability, followed by the concrete overlay, and the bituminous has the lowest 
reliability for the same CTT. 
 
Hence, the CTT was chosen as the dependent variable for this study. The models to analyze the deterioration 
pattern of a bridge deck were built to predict the survival probability given the CTT, which will be referred 
to as the sojourn time for the remainder of the report. 
 

 
Figure 14. Deterioration pattern with CTT as the independent variable. 
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VERIFYING THE CHOICE OF GENERALIZED GAMMA DISTRIBUTION 
Eight of the most popular distributions, exponential, Weibull, Gompertz, gamma, generalized gamma, log-
normal, log-logistic and F, were chosen to compare the fit of the bridge deterioration inspection dataset 
used in this study. The non-parametric Kaplan-Meier reliability and the estimated parametric reliability for 
the six different distributions are shown in Figure 15, along with the relative error in the prediction of each 
distribution. Based on the results shown in Figure15 the best fit is achieved by the GGD model due to its 
flexibility. Hence, the analysis was continued with the GGD distribution.  
 

 
Figure 15. Results of different distributions used to model bridge survival probability function. 

VERIFYING THE ACCURACY OF THE MCMC METHODOLOGY 
To understand the appropriateness and accuracy of the MCMC methodology, first a model with only one 
predictor variable—rebar type—was estimated. To do so, the change in sojourn time as a function of the 
three major rebar types in the inspection data—bare rebar type, epoxy rebar type, and galvanized rebar 
type—was determined. A baseline that consists of all other rebar types was established.  

3 
The model parameters were estimated using: (1) a maximum likelihood estimation utilizing the Newton 
method (Peng, 2020), which is one of the most commonly used parameter estimation methods in the 
literature ; and (2) the Metropolis-Hasting MCMC method using 20,000 samples generated from the 
posterior distribution. Since the MCMC method provides a distribution for each parameter, the average 
parameter from this method was then estimated using either a Maximum A Posterior estimation (MAP) or 
simple mean. The resulting estimates can be seen in Figure 16 as the distribution of the parameter for the 
bare rebar, a normal distribution fitted to the parameter distribution, and the three point-estimates of the 
parameter.  
 

Relative error: 6.84% Relative error: 5.45% Relative error: 4.73% 

Relative error: 5.70% Relative error: 9.34% Relative error: 3.54% 
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From Figure 16, it can be observed that the three different point-estimates of the parameter are very similar. 
This indicates that the MCMC method can closely predict the parameter values compared to standard 
methods. The advantage of the MCMC method is that along with the point estimate it provides a distribution 
for the parameter, which can be used to determine bands of confidence around predictions of sojourn times 
and is also useful for updating the parameters as new data become available. 
 

 
Figure 16. Comparison of estimation results of bared rebar type. 

Since the samples can be closely fitted to a normal distribution, the MAP estimation and mean of sample 
should theoretically be identical. For the remainder of the report, the mean of the sample distribution is 
used as the point estimation for each parameter. Survival probability was determined using both the 
predictive model and Kaplan-Meier estimation, see Figure 17. 
 

  
(a) (b) 
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(c) (d) 

Figure 17. Comparison of MCMC results and Kaplan-Meier estimation: (a) bare rebar,  
(b) galvanized rebar, (c) epoxy rebar, and (d) other rebar types (baseline). 

From Figure 17, it can be seen that the predictive model has a high accuracy, can closely predict the 
deterioration pattern of different rebar types, and can distinguish the influence of different rebar types. A 
confusion matrix, which shows the accuracy of predicting the sojourn time using different rebar type 
variables, is calculated as shown in Table 5. For example, if the deterioration of a bridge deck with 
galvanized rebar is being predicted, however the model for bare rebar was used, the relative error would be 
0.33. It can be seen that the model has the largest accuracy along the diagonal, which is when the correct 
rebar type from the data is used to predict the sojourn time of the data. 

Table 5. Confusion matrix of the predictive model. 

Relative Error 
Real Data Real Data Real Data Real Data 

Bare 
Rebar 

 Galvanized 
Rebar 

Epoxy 
Rebar 

Rebar 
Baseline 

Predicted Data 

Bare Rebar 0.15 0.46 0.33 0.48 
Galvanized 

Rebar 0.33 0.16 0.22 0.70 

 Epoxy 
Rebar 0.16 0.18 0.14 0.59 

Rebar 
Baseline 0.64 1.11 0.93 0.31 

ESTIMATION OF THE FULL MODEL  
Next, a full model considering all attributes for CR 4 through CR 9 was estimated. To do so, all data were 
initially included in the model and backward elimination was performed. Finally, 41 attributes were 
included for various CR ratings. Using these attributes, 20,000 samples of the MCMC were generated, and 
the mean of the coefficients estimated is shown in Table 6. Notice that each discrete variables’ coefficient 
was estimated considering a baseline, and not all attributes were significant for different CR values. If a 
level of a discrete variable was not significant, it was included in the baseline (e.g., District 2 and District 
8 make up the baseline for CR 4).  
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Table 6. Estimated parameters of the full model. 

Attributes CR 4 CR 5 CR 6 CR 7 CR 8 CR9 
District 

District 1 -0.172 -0.1381 -0.2728 -0.5901 -0.0894 0.0162 
District 2 * -0.0997 * -0.7327 * 0.327 
District 3 -0.4446 -0.4267 -0.1247 -0.4232 * -0.2198 
District 4 0.7709 * 0.0649 -0.4061 0.506 -0.0398 
District 5 1.0466 0.598 0.4514 * 1.1258 0.7528 
District 6 0.0359 0.9389 0.8934 0.641 1.2452 0.8245 
District 8 * 0.1756 * * 0.5437 0.4424 
District 9 -0.2991 * -0.3522 -0.6383 -0.2432 -0.5398 
District 10 -0.4664 -0.4978 * -0.7578 -0.0016 -0.4088 
District 11 0.3295 * 0.3404 0.2328 0.6338 * 
District 12 0.1242 * -0.3278 -0.7794 0.338 * 

 Main Materials Type 
 Steel * * * * * -0.3919 

 Concrete (Cast in Place) 0.2031 -0.2634 -0.267 0.678 0.3162 * 
 Concrete (Precast) - -0.5625 -0.4967 0.4 -0.3127 - 

 Prestressed Precast Concrete * * * * -0.1634 -0.7049 
 Concrete Encased Steel 0.1904 0.4508 0.1754 0.4344 0.1246 - 

 Physical Makeup of the Main Span of the Structure 
 Reinforced 0.4344 1.4082 0.9421 0.3849 0.3278 * 

 Pretensioned * * * * * 0.5282 
 Rolled Sections -0.1781 * -0.2153 -0.1943 -0.0124 0.5223 

 Rolled Sections with Cover Plates -0.6588 * -0.3695 -0.4118 -0.5 - 
 Combo, Rolled Sections/Cover-Plates - 0.2895 -0.1294 -0.578 - - 

 Other 0.2566 * -0.1561 -0.1998 0.11 0.0811 
 Span Interaction for the Main Span of the Structure 

 Simple, Non-Composite -0.0664 -0.1583 -0.3387 -0.1015 -0.2207 -0.184 
 Continuous, Non-Composite -0.3865 0.089 -0.1764 0.2442 0.4293 - 

 Continuous, Composite 0.1907 -0.0733 0.2347 0.3572 0.0206 -0.32 
 Other 0.1987 -0.2811 -0.243 -0.1141 -0.4062 - 

 Structural Configuration for the Main Span of the Structure 
 Slab (Solid) -0.7481 -0.9218 -0.8948 -0.9919 -0.4654 0.1931 
 T-Beams -0.2448 -0.5426 -0.3899 -0.848 -0.247 0.8732 
 I Beams * * * * 0.1833 * 

 Box Beam - Single -0.2722 -0.2242 -0.4843 -0.5586 * 0.2272 
 Box Beam - Adj -0.4231 -0.485 -0.6576 -0.6051 -0.3807 -0.2772 
 I-Welded Beams - -1.1168 -0.538 -0.7838 -0.2569 - 
 Girder Weld/Deck -0.5607 0.1753 0.2236 -0.0005 * - 

 Truss - Deck - - - 1.2577 - - 
 Rigid Frame - -1.9073 -0.8808 -1.0065 - - 

 Deck Protection Type 
 Epoxy Coated Reinforcing * * * 0.4535 0.4208 0.2034 

 Galvanized Reinforcing - -0.0321 * 0.8791 0.6218 - 
 Deck Rebar Type 

Epoxy Rebar 0.464 0.4066 0.3161 - 0.0724 0.5141 
Galvanized Rebar * 0.2146 -0.0435 -0.6243 -0.233 * 

Others -0.311 - -0.2592 -0.3624 -0.1209 -0.1343 
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Attributes CR 4 CR 5 CR 6 CR 7 CR 8 CR9 
 Main Bridge Spans (Number of Spans in Main Unit) 

 1 * * 0.1717 0.2323 * * 
 2 -0.0423 -0.2493 * * -0.1913 0.2646 
 3 0.9023 0.7065 0.9246 0.7042 0.4596 0.8411 
 4 0.1244 -0.2311 * 0.1665 0.1174 -0.0462 
 5 1.224 0.3203 0.295 * 0.0645 - 
 6 - - 0.0878 -0.2673 - - 

 Waterproofing Membrane on the Bridge Main Span 
 Preformed Fabric 0.0913 0.558 * 0.2054 0.406 0.5369 

 Epoxy - - - -0.0879 - - 
 Other - -0.3782 -0.7985 -0.8029 - - 

 Wearing Surface Types on the Bridge Main Span 
 Concrete Overlay 0.462 0.6124 0.6774 0.5288 0.6413 0.5869 

 Epoxy Overlay 0.7728 0.9731 0.7558 0.8091 1.0521 - 
 Bituminous 0.4119 * 0.4016 0.4239 0.4598 0.5825 

Special Events 
 Sharply Decrease -0.9948 -0.8328 -0.4298 -0.403 -0.6643 * 
 Nothing Happened * * * * 0.5094 2.803 
 Sharply Increase * -0.293 -0.2683 -0.4494 * * 

Length 0.1736 0.3423 0.3293 0.4505 0.1212 0.653 
Deck Width 10.2289 9.5222 8.4817 10.4584 10.5333 11.322 
Ln (Sigma) 0.4118 0.4726 0.4288 0.4351 0.3678 0.4232 

Lambda 0.6226 0.3328 0.4375 0.4071 0.3318 0.2827 
Beta_0 -3.6452 -4.2849 -3.9917 -4.4316 -6.2533 -7.4602 

Note: “-” means a baseline of each model, which has a similar deterioration pattern with the full dataset; “*” means 
that not enough data were available for such attribute type to feed the model (denotes less than 500). 

 
From Table 6, it can be seen that the influence of each attribute for different condition ratings varies slightly; 
however, the trends are consistent. Some detailed results and observations from  
Table 6 are discussed below.  
 
The mean value of the parameters of the DISTRICT attribute for each CR is plotted in Figure 18, along 
with the error bars that represent the standard deviations of those samples. Bridges from different districts 
have different management strategies, environmental conditions, budgets, and traffic conditions, hence 
bridge performance varies among districts. Bridges that have the highest reliability are in districts 5 and 6, 
which are located in eastern Pennsylvania, which is most likely due to economic development and weather 
conditions in that location. 
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Figure 18. Parameters of DISTRICT in each condition rating. 

The DEPT_MAIN_PHYSICAL_TYPE attribute denotes the physical makeup of the main span of the 
structure. Figure 19 shows the reliability parameters of different physical makeup types. The reinforced 
type has the highest reliability compared to the other types. From Table 6, it can be seen that the 
pretensioned type is mostly chosen as a baseline, which implies that the reliability of the pretensioned type 
is between the reinforced type and the rolled sections with cover plates.  

 
Figure 19. Parameters of DEPT_MAIN_PHYSICAL_TYPE in each condition rating. 
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Figure 20 shows that continuous span interactions for the main span of the structure are generally the 
strongest as compared to simple spans and others, and composite is slightly better that noncomposite in 
most condition ratings (i.e., CR 4, CR 6, CR 7).  
 

 
Figure 20. Parameters of DEPT_MAIN_SPAN_INTERACTION in each condition rating. 

The results of DECK_REBAR_TYPE show that galvanized rebar and epoxy rebar performs better than 
others, and epoxy rebar is slightly better than galvanized rebar. However, due to the few data of epoxy 
rebar, the confidence interval of the parameters of epoxy rebar is large, see Figure 21. 

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

 Simple, Non-
Composite

 Continuous, Non-
Composite

 Continuous,
Composite

 Other

CR4 CR5 CR6 CR7 CR8 CR9



 

 35 r3utc.psu.edu 
 

 
Figure 21. Parameters of DECK_REBAR_TYPE in each condition rating. 

Another interesting result is obtained for bridge decks that experience sharp (more than two condition 
ratings between two consecutive inspections) declines or increases in condition ratings. The sudden 
increases could be due to a maintenance or reconstruction activity, and the sudden declines could be due to 
an incident happening on the bridge causing it to deteriorate quickly in a short time. Figure 22 shows the 
parameters for the baseline (i.e., only smooth transitions, type 1: sudden increase, and type 2: sudden 
decrease). The model results show that after a bridge has been maintained, the condition of the bridge will 
not have the same performance as a bridge at the same condition rating that was not reconstructed. Every 
time when the bridge has been maintained, the reliability will drop slightly as compared to a newly 
constructed bridge. On the other hand, comparing type 1 to type 2, it can be seen that damage to a bridge 
has a larger impact on the reliability of the bridge as compared to a controlled maintenance activity being 
performed.  
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Figure 22. Parameters of SPECIAL EVENTS in each condition rating. 

Additionally, since all the attributes were incorporated into the model as a binary variable (0 or 1), and the 
coefficient of a given attribute represents the independent influence of this attribute, the model can easily 
be used to understand the reliability of bridges considering multiple attributes by simply summing their 
coefficients. For example, when a new bridge with a bare rebar type is constructed in district 2, and another 
with a galvanized rebar type is built in district 5, the reliability of the two bridges can be directly compared 
by adding the coefficients of the relevant rebar type and district number from the model to obtain the 
reliability of each bridge. This feature can be used in analyzing the reliability of newly constructed bridges. 

Bayesian Estimation Results 
As new inspection data become available, the old model will require updating. In this case, Bayesian theory 
can be utilized to update the parameters of the existing model. The CR 6 dataset was utilized to demonstrate 
the proposed method. 
 
Firstly, the dataset was divided into two parts according to the inspection date of the bridge. The first dataset 
consisted of all the inspection data before 2000, and the second dataset consisted of all the inspection data 
between 2000 and 2015. Another test that used the entire dataset as one was also developed to compare to 
the two-step updated results. The number of observations that were available in each dataset are shown in 
Table 7.  

Table 7. Dataset description. 

Dataset Censored Data Complete Data Total 
1985-2000 5,404 1,301 6,705 
2000-5015 5,405 2,470 7,875 
1985-2015 

(Entire dataset) 7,264 3,827 11,091 
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First, dataset 1 was modeled as described using a beta distribution as the prior distribution and using the 
MCMC method; 20,000 samples were generated from the posterior distribution. A normal distribution was 
used to fit these samples to obtain the posterior distribution (see Step 1, blue histograms and fitted curves 
in Figure 23). Next, the fitted normal distributions for each parameter were used as the prior distribution 
for determining the posterior distribution using dataset 2. Again, 20,000 samples were generated from the 
posterior distribution and a normal distribution was used to fit the samples to obtain the posterior 
distribution (see Step 2, yellow histograms and fitted curves in Figure 23). The results from the test using 
the entire, complete dataset at once are also shown below (see all data, red histograms and fitted curves in 
Figure 23) to compare the results from the updating process and direct calculation.  
 
 

 
 

(a) Bridge deck rebar type (b) Bridge rebar protection 

  
(c) District  (d) Number of main spans 

 
Figure 23. Bayesian updating results. 

From Figure 23, it can be observed that as more data become available, the samples become more 
concentrated, and the accuracy of the predictive model is improved. The interval estimation also resulted 
in a narrower range. The updated results are very similar to the direct calculations, which showed that the 
Bayesian updating method can obtain reliable results.  
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C H A P T E R  7  

Recommendations 

Condition ratings from inspection points of 22,000 bridges in Pennsylvania were collected over a 30-year 
span. Bridges in Pennsylvania experience a skewed right distribution and will stay at a condition rating for 
an average of 2,849 days (7.7 years) and a standard deviation of 1,621 days (4.4 years). Bridge attributes 
were compared to see how different attributes and truck traffic influence the deterioration rate of a bridge. 
Based on the data provided by PennDOT, the epoxy rebar and galvanized rebar show a higher reliability 
compared to the bare rebar, and the single-span bridges can take heavier traffic loads than multi-span 
bridges. The epoxy overlay  is stronger than concrete or asphalt surface when the bridge is in good 
condition, but its reliability will drop more quickly once the bridge deteriorates to the lower condition rating 
due to cracks. Similarly, asphalt overlays are particularly useful when the bridge is already in good 
condition; however, the difference between asphalt overlays and others  is more negligible as deterioration 
sets in. It was also found that the bridges constructed between 1943 and 1980 suffer higher truck traffic but 
still, with the similar sojourn times, this indicated that the bridges constructed between 1943 and 1980 have 
a higher reliability compared to others.  
 
Furthermore, a new perspective on analyzing the influence of different attributes of bridge decks on the 
deterioration process is examined. Instead of the traditional approach that considers the influence of 
attributes on the bridge’s reliability for different times, the authors found that it is more reasonable to 
analyze this impact from the view of the cumulative truck traffic. Consequently, the reliability of the bridge 
can be more accurately related to the attributes and it is possible to quantify the influence of different 
attributes on bridge deck reliability. 
 
It was also found that a generalized gamma distribution is more suitable to model the bridge deck 
deterioration pattern, compared to other commonly used distributions, such as Weibull distribution, log-
normal distribution, and gamma distribution. The accelerated failure time approach was also implemented 
in this model to incorporate the attributes of bridge decks. A parameter estimate approach was designed for 
the AFT-GGD model, which overcomes the convergence problem and computational problems during 
programing. 
 
In order to realize the self-updating function to make the model more flexible and efficient, Bayesian 
inference was used to update each parameter when new data become available. The MCMC method was 
utilized to obtain the full posterior distribution of parameters based on Bayesian theory. A case study 
showed that the proposed method in this study had high accuracy and efficiency of updating.  
 
The model results provided a quantitative comparison of reliabilities of bridges with different attributes and 
the deterioration probability can be calculated under specific conditions. The district where bridges are 
located, the rebar type, the surface overlay type, as well as other attributes have a significant influence on 
the bridge deterioration process. By using the proposed model, the reliability of new bridges can be 
calculated, and the model can be updated as new inspection data come in real time. 
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